
OAF: An Open Archive of Formalizations

Mihnea Iancu

Jacobs University Bremen

April 12, 2013

1 / 22

Motivation

numerous deduction systems exist

most have associated formal libraries

many notions and results formalized in several libraries

individual libraries already too large to oversee

need for integration and management

2 / 22

OAFF : Goals

an Open Archive of (Flexi)Formalizations

universal archiving solution for formal math libraries

generic wrt. logics and implementations
aware of the semantics

to provide meaningful services

content integration (for formal libraries)

active documents
commenting/rating/refereeing

dissemination channels
aggregate journals of formalizations

3 / 22

OAF Architecture

Backend

MMT Kernel
LATIN logic graph

Database
versioned XML database (TNTBase)

Frontend

Drupal content management system
Planetary framework

4 / 22

OAF Architecture

5 / 22

Current State

Archives

around 50GB of data

urtheories, LATIN, MML, TPTP, OpenMath

Services/Applications

change management via MMT

interactive browsing via MMT/JOBAD

search via MathWebSearch

discussion forums, local comments via Drupal/Planetary

Integration between MMT and Planetary still limited

6 / 22

Current State

Archives

around 50GB of data

urtheories, LATIN, MML, TPTP, OpenMath

Services/Applications

change management via MMT

interactive browsing via MMT/JOBAD

search via MathWebSearch

discussion forums, local comments via Drupal/Planetary

Integration between MMT and Planetary still limited

6 / 22

Archives (Mizar Mathematical Library)

7 / 22

Mizar Project

started around 1973

based on a variant of first order logic

design goal was to be simultaneously readable by mathematicians and
verifiable by computer software

complex statement level declarations
definition, theorem, lemma, scheme, registration, notation, reservation

8 / 22

Mizar Mathematical Library

based on build-in Mizar notions and Tarski-Grothendieck set theory

contains articles formally verified by the Mizar system

articles are collected and organized by a library committee

latest version (4.181.1147) includes:

1150 articles written by 241 authors
51762 theorems, 10158 definitions, 787 schemes, 11008 registrations,
7501 symbols.

9 / 22

MML Import

based on Josef Urban’s XML export
based on constructor level language

uses declaration patterns to preserve structure of Mizar statements
e.g definition, theorem, scheme

grounded on formalization of Mizar logic in LF

currently have two versions (1132 and 1147)

can use OMDoc-based services for (OMDoc)MML

10 / 22

MML Import

11 / 22

Services (Search and Change Management)

12 / 22

Search

MathWebSearch (MWS) formula search engine

crawler subsystems
collect data from archives, convert to MWS harvests

core system
builds search index from harvests, processes queries

RESTful interface
HTTP API for interacting with the system

well integrated with MMT

13 / 22

Search in Mizar

14 / 22

MoC in MMT

Management of Change

MoC usually involves

detect changes
see if/how something changed

compute affected items
maintain some notion of dependency

handle/identify conflicts
in SE typically re-compile e.g. Eclipse

Goals of MMT MoC

semantic differencing

fine-grained dependencies

impact propagation

some form of a validity guarantee

15 / 22

MoC in MMT

Management of Change

MoC usually involves

detect changes
see if/how something changed

compute affected items
maintain some notion of dependency

handle/identify conflicts
in SE typically re-compile e.g. Eclipse

Goals of MMT MoC

semantic differencing

fine-grained dependencies

impact propagation

some form of a validity guarantee

15 / 22

Mmt Example

Mmt Notions

theories contain constant declarations

constants have components (type and definiens)

components represented as Mmt/OpenMath terms

URIs for each theory/constant/component

Rev1

PL = {
bool : type
⇒ : bool → bool → bool
∧ : bool → bool → bool
⇔: bool → bool → bool

= λx .λy .(x ⇒ y) ∧ (y ⇒ x)
}

Rev2

PL = {
form : type
¬ : form→ form
∧ : bool → bool → bool
⇔: bool → bool → bool

= λx .λy .(x ⇒ y) ∧ (y ⇒ x)
}

16 / 22

Mmt Example

Mmt Notions

theories contain constant declarations

constants have components (type and definiens)

components represented as Mmt/OpenMath terms

URIs for each theory/constant/component

Rev1

PL = {
bool : type
⇒ : bool → bool → bool
∧ : bool → bool → bool
⇔: bool → bool → bool

= λx .λy .(x ⇒ y) ∧ (y ⇒ x)
}

Rev2

PL = {
form : type
¬ : form→ form
∧ : bool → bool → bool
⇔: bool → bool → bool

= λx .λy .(x ⇒ y) ∧ (y ⇒ x)
}

16 / 22

Semantic Differencing

we extend Mmt with a language of (strict) changes

add (A) and delete (D) constants
update (U) components

Diff ∆ ::= · | ∆, δ
Change δ ::= A(T , c : ω = ω′) | D(T , c : ω = ω′) |

U(T , c, o, ω, ω′)
Component o ::= tp | def
Box Terms ω ::= ω | · ∗

17 / 22

Pragmatic Changes

composition of strict ones
e.g. rename as pair of add and delete

carry impact semantics
e.g. for a rename update references

defined computationally (implemented)
when can they be constructed, what is their change propagation

constructed in a separate refinement step

18 / 22

Fine-grained dependencies

in Mmt, validation units are individual components (types and
definiens)

we distinguish two types of dependencies
syntactic dependencies

declaration level
foundation-independent
occurs-in relation

semantic dependencies

component level
foundation-dependent
trace lookups during foundational validation

dependencies are indexed by MMT and are available at any time

19 / 22

Fine-grained dependencies

in Mmt, validation units are individual components (types and
definiens)

we distinguish two types of dependencies
syntactic dependencies

declaration level
foundation-independent
occurs-in relation

semantic dependencies

component level
foundation-dependent
trace lookups during foundational validation

dependencies are indexed by MMT and are available at any time

19 / 22

Impact Propagation

key idea : propagation as diff enrichment process

impact propagation of a diff ∆ is another diff ∆ that :

marks impacted components
by surrounding with OpenMath error terms

automatically propagates pragmatic changes
using impact semantics

Theorem

After all error terms are replaced with valid terms in G � ∆� ∆, the
resulting theory graph is valid.

20 / 22

Impact Propagation

key idea : propagation as diff enrichment process

impact propagation of a diff ∆ is another diff ∆ that :

marks impacted components
by surrounding with OpenMath error terms

automatically propagates pragmatic changes
using impact semantics

Theorem

After all error terms are replaced with valid terms in G � ∆� ∆, the
resulting theory graph is valid.

20 / 22

Workflow Example (relative to a graph G)

∆

∆′ ∆′,∆′

G′ G′′

Propagator

Diffs

Graphs

Refiner

x − G G � x

21 / 22

Conclusion

Open Archive of Formalizations

integrate of formal libraries
share existing knowledge, make it available to new systems

provide MKM services
change management, search, presentation, forum-based discussions

separation of concerns
knowledge formalization vs service/application development

22 / 22

	Introduction
	Archives : MML
	Services: Search and MoC

